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We generalize a variational principle for the mean spherical approximation for 
a system of charged hard spheres in 3D to arbitrary dimensions. We first 
construct a free energy variational trial function from the Debye-Hiickel excess 
charging internal energy at a finite concentration and an entropy obtained at 
the zero-concentration limit by thermodynamic integration. In three dimensions 
the minimization of this expression with respect to the screening parameter 
leads to the mean spherical approximation, usually obtained by solution of 
the Ornstein-Zernike equation. This procedure, which interpolates naturally 
between the zero concentration/coupling limit and the high-concentration/ 
coupling limit, is extended to arbitrary dimensions. We conjecture that this 
result is also equivalent to the MSA as originally defined, although a technical 
proof of this point is left for the future. The Onsager limit T zIsMSA/JE MsA "* 0 
for infinite concentration/coupling is satisfied for all d 4: 2, while for d = 2 this 
limit is 1. 

KEY WORDS: Ionic mixtures; mean spherical approximation; variational 
approach. 

1. INTRODUCTION 

I t  is a p l e a s u r e  to  c o n t r i b u t e  to  this  issue in h o n o r  of  B e r n a r d  Jancov ic i ,  

a t rue  g r e a t  m a n  in the  t h e o r y  of  C o u l o m b  sys tems.  

T h e  m e a n  spher i ca l  a p p r o x i m a t i o n  ( M S A )  was  o r ig ina l ly  f o r m u l a t e d  

in 3 d i m e n s i o n a l  space  (~'2) as a l i nea r i zed  c losure  to  the  O r n s t e i n - Z e r n i k e  
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equation. For ionic system MSA closure is the linearized Poisson-Boltzmann 
equation, which is also the starting equation of the Debye-Hfickel (DH) 
approximation, t3) since the Fourier transforms of the MSA equations and 
the DH equations are the same, except for the discontinuities contributions 
coming from the boundaries. For the most general case of arbitrary 
mixtures of charged hard spheres the analytic solution of the MSA in 3 
dimensions is given in terms of a single scaling (screening) parameter F. (4) 

Furthermore the thermodynamic-electrostatic excess properties such as the 
internal energy, Helmholtz free energy and entropy, derived from the inter- 
nal energy by thermodynamic integration yield explicit formulas (5' 6)which 
are isomorphic with those of Debye and Hiickel, except for the fact that the 
Debye parameter x is replaced by the scaling (screening) parameter F. In 
spite of this similarity in the thermodynamics, the MSA pair correlation 
functions are not simple exponentials, as is the case in the DH theory, but 
reflect the excluded volume of the ions in the ionic cloud, and are therefore 
oscillating functions. ~5) The excluded volume effect makes the ionic cloud 
larger, and in fact in the high density-high coupling limit 

x ~- F ~/2. ( 1 ) 

One of the remarkable facts of the MSA-like theories is that for a 
variety of systems in 3D, which includes systems with not only hard cores 
but other types of interactions such as associating interactions, ~7'8) the 
thermodynamic charging excess functions obtained from the internal 
energy by integration of 

a~ / fA  MSA 
= A E MsA . ( 2 ) 

are of the general form: 

where 

A A  MSA = A E  MsA - -  T z l S  MSA, (3) 

and 

L I E  MsA 
e 2 F 

= - - - -  ~i p i ( 2 " 1 2 ~  , e . 1 +l- 'a i  
(4) 

F 3 
AsMSA = - k  3"-~-' (5) 
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where the symbols are those of ref. 7, namely Pi, Zi* ,  a i  are the density, 
effective charge and diameter of ion i, e is the dielectric constant, T is the 
absolute temperature and k is the Boltzmann constant. 

In a previous paper (9) the observation was made that all the MSA 
results Eqs. (3-5) could be obtained by minimization of a functional which 
is identical to the MSA excess free energy AA MsA 

0 / f A  MSA 

OF 
=0. (6) 

The MSA is the variational problem in which an approximate (the so- 
called ring sum) free energy d A  MsA is minimal tl~ 

6[AA MsA] =0. (7) 

This interpretation was already present in the original work of Percus and 
Yevick. (3) Differentiation of equation (6) yields explicitly 

O AAMS'----~a O = OF OF - -  - -  E p i(ezi*)2 [ 1 ] F 2 
E (1 + cr~F) 2 + --n 

=0. 

(8) 

which is an algebraic equation for the new scaling parameter F, and is the 
correct closure equation for the MSA. 

When all the ions have the same diameter 6 i = 6 then Eq. (8) simplifies 
considerably, and we recover the primitive model result, (2) which is a 
simple quadratic for F 

( 1 + 2xa) = ( 1 + 2Fa) 2. (9) 

The solution of this equation is 

F =  (1/2a)(~/(1 + 2 x a ) -  1). (10) 

For low concentrations we get back the DH theory. At infinite coupling we 
get Eq. (1). 

A more formal justification of this result can be found using the varia- 
tional principle for the ring diagram sum (1~ in which the minimization of 
the ring diagrams sum with respect to the direct correlation function yields 
the MSA, in combination with the scaling principle for the MSA, which 
requires a single parameter for any given mixture of charged hard spheres. 
We extend this principle to arbitrary dimensions. The conjecture is that this 
generalization of the 3 dimensional variational derivation of the MSA to 
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arbitrary dimensions should correspond to the Omstein-Zernike based 
MSA. 

The limit of infinite dimensions has been investigated for different 
many body problems ~1,12,13,~4) because it represents considerable sim- 
plifications in the computational algorithms, and also because of insights 
that it gives for problems such as criticality and percolation. We consider 
here the restricted primitive model for a ionic mixture of d-dimensional 
hard hyperspheres of diameter a with centrally located charges ez~, where 
e is the fundamental charge. The medium and the ions have uniform dielec- 
tric constant e. The method is a generalization of the variational method 
proposed in earlier work ~9) to arbitrary dimensions. In Section 2, we review 
the Debye-Hiickel theory, ~15) which is the exact limiting theory of ionic 
solutions for low concentrations, but which does not properly include 
hard-core interaction condition 

g(r) = 0, r < a .  (11) 

In the MSA, the hard-core interactions are properly included, while the 
same linearized Boltzmann approximation is used for the charged part. The 
hard core exclusion interactions prevent the collapse of the system, since 
the volume occupied by the ions prevents the formation of pairs of 
unbounded energy. As it was recently shown, a variational method ~9) will 
reproduce exactly the results obtained by analytic solution of the MSA 
integral equations in 3 dimensions. We assume then that this is true for any 
dimensionality. This conjecture is based on the analysis of Chandler and 
Andersen, ~~ who showed that the minimization of an approximation to 
the Helmholtz free energy, consisting of the sum of ring diagrams, is equiv- 
alent to the MSA ring diagrams, which we conjecture to be valid in any 
dimensionality. A detailed proof of this conjecture is left for a future publi- 
cation. This point was is also discussed by Percus. ~3) We derive the DH 
expressions in any dimension, using an extension of the variational prin- 
ciple ~9) to derive the closure relation for the screening parameter F. Finally, 
we study the Onsager limit ~16' ~7) T AS/AE for the infinite density limit. 

2. DEBYE-HUCKEL THEORY 

Since our results are based on the generalization of the Debye-Hiickel 
theory we give a short account of these results: r The electrostatic poten- 
tial at a distance r from ion i, r must satisfy Poisson's equation: 

V2r ) = _12__.d q~(r), (12) 
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where V 2 is the Laplacian in d-space, 

2~zd/2 
I2 d - F( d/2 ) (13/ 

is the surface of the d-dimensional unit sphere, and qi(r) is the charge 
density at r, which is found by adding the contributions of all ions 
surrounding i" 

qi(r) = e ~ zjpji)(r).  (14) 

The density of ions in the neighborhood of i can be expressed in terms of 
the pair correlation function, 

gij(r) = pj.i)(r) _ p ~y)(r). (15) 
Pj P, 

From an analogy to the compressible fluid model with density proportional 
to the pressure, the pair correlation function is 

go.(r) = e-PwCr), (16) 

where w u(r ) is the potential energy due to the interaction of i and j. We 
write this potential energy as 

wo.(r) = uij(r) + ~ij(r) uij(r) = ez jr  (17) 

the first term being purely electrostatic interactions. If all non-electrostatic 
interactions (including hard cores) are small compared to the electrostatic 
interactions ( (u( r )~0) ,  and since when r is very large r must be small, 
we can linearize the exponential: 

go.(r) ~- 1 -- flzej.r 

Substituting into Poisson's Eq. (12) we obtain the DH equation: (151 

(18) 

where 

V~r = x2r r > a, (19) 

g 
J 
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and a is the diameter of the hyperspheres. The solution of the DH equation 
is accomplished transforming to spherical coordinates. ~19) The radial part 
of the Laplacian is 

10(rd_lO ) 
V ~ - r a - 1  Or ~ , (21) 

and we find 

d2r d -  1 dr ~ +  
dr 2 r dr 

x2r  r > a ,  (22) 

whose general solution is 

1 
r r) -- rd/2_ 1 [ A iKd + 2-1(Kr) q - Bild/2--1(Kr) ] r > a ,  (23) 

where K,(x) and/~(x) are the modified or hyperbolic Bessel functions. The 
boundary condition when r --, oo requires that Bi = 0. For r < a, the centers 
of the ions surrounding i are not included and the potential must satisfy 
Laplace's equation: 

V~r = 0  r < a ,  (24) 

which yields, for 0 < r < a 

f Ci ln(Di r) 
r = _ C, 

( d -  2) r a-2 

d = 2  

+D~ d > 2  
(25) 

The values of the constants are determined by the boundary condi- 
tions at r = a (continuity of the potential and of the electric displacement), 
and Gauss' law. We find 

[" ezi [,  r Ko(xa ) 
/ -  -~- [ m a - xa--~-~l(xa) ] 

= ! ezi ezi [ Ka/2-l(Xa) 
xa) xaKa/z( 

I eziKa/2_l(xr) 

d - 2  

0 < r < a  d = 2  

0 < r < a  d > 2  

r > a  (26) 
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where the average electrostatic potential acting on the ith ion fixed at the 
origin due to all other ions in the solution is 

( eziKo(KO') 
= ~eXaKl(Xa) 

( ~i) i ezi [ Kal2- l(#ca) ,} 
d - 2  

d = 2  

d > 2  

(27) 

This charge distribution satisfies the local electroneutrality condition 

- e z i =  dr Oar a- lqi(r ), (28) 

which can be verified by direct substitution. The expression for the excess 
energy per unit volume is (4' 5) 

AEMSA 1 -- ~ ~ PiPj dr Qa ra lu - o(r) go(r) �9 
i,j 

Therefore, we find 

(29) 

- xKo( xa) 

AEMS A 4na[3Kl(xa) 
= _ x 2 F ( d / 2 )  K , : _ d x a )  

4 ( d -  2 )na/za a- Z flKa/2( xa) 

d = 2  

d > 2  

(30) 

To identify the behavior of AE MsA in the limit of infinite dimensions, 
we use the asymptotic expression for large order v t2~ 

K, ( v z ) ~ ~~v d - ~ f o~ } (1-~Z2) 1/4 l-q- E (--1)kUkll(ff) ' 
k----1 

(31) 

where 

Uo(t) = 1, 

Uk+l(t) t2(1 t2) U~ t) 1~s = - + ~  ( 1 - 5 x  2) uk(x)dx k = 0, 1, 2,..., 

(32) 

(33) 

1 
t ~ _ ~ ~  

~/i +z,' 
r/= ~/q + z 2 + In 

1 +~/1  + z  2' 

(34) 

(35) 
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to find 

e - ' / ~ + a  v + x/z2 + v (1 + O(v-1)) ,  
K,(z) ~ (z~ ~v~ii74 4 (36) 

and, to leading order in V - 1  

( )a " ~, z . , ~ v - - a ~ c ~ .  (37) 
K,,(z) 2 ( v - a )  

With the appropriate substitution in the previous equation, (30) becomes 

A E M S A , , ~  - -  x4a41"(D/2) d ~  Go, (38) 
4(d - 2)(d - 4) 2 rtd/2ad fl 

and since d is large, Stirling's approximation for the Gamma function can 
be readily used to find 

AEMSA ._. K4a4ff l/2e (d--2) d/2 
~ 2 ( d -  2)3/2 ( d _  4)2~ 2herr2 (39) 

3. LIMIT FOR DILUTED SOLUTIONS 

For very diluted solutions, where x is very small, we may approximate 
the hyperbolic Bessel functions in (30) by their asymptotic form to obtain 

K .2 
[ln(xcr/2) + 7] + O(K 4) 

KaF( 2 - d/2 ) 
- -2d(d - 2) rcd/2fl + O(X4) 

R7 4 
zlEMSA = 1,'6n2fl [ln(Ka/2)+ 7] + O(x 6) 

r4F(d/2 -- 2) 
-- 16(d-  2) nd/2ad-4fl + o(Kd) 

x4F( d/2 - 2 ) 6) 

- 16(d-  2) zta/2aa-4fl + O(x  

d = 2  

2 < d < 4  

d = 4  (40) 

4 < d < 6  

d~>6 

We now consider 

z lA MSA _. z jEMSA _ T z~S MSA, (41) 
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where zJA MsA is the excess Helmholtz's free energy and zJS MSA is the excess 
entropy due to the charges. From this expression, we obtain 

A A M S A =  1 ;o ~ EMSA(f l  , dfl' ,4 ), (42) 

which is equivalent to the charging process used in the DH theory to derive 
thermodynamic functions. After using (40) 

r' K2 
4 ~  [ln(xa/2) + Y -  1/2] + O(x 4) d =  2 

xdF( Z - d/2 ) 
+ O(x 4) 2 < d < 4 

2 d -  ld(d-2)  d/2fl 
K 4 

AAMSA= ~ 32~r2fl [ln(xtr/2)+ y-- 1/4] + O(K 6) d = 4  (43) 

_ x 4 F ( d / 2  - 2) + O(x  a) 4 < d < 6 
3 2 ( d -  2) nd/Ead-4fl 

_ /r - 2)  + O ( x  6) d >i 6 
32(d -  2) rr, d/2ad-afl 

Now we return to (41) to find 

/r 

8~flZ'dF" O(K 4) d =  2 

xaF( 2 - d/2 ) 
- 2u drca/2flT + O(x 4) 2 < d < 4 

K 4 
AsMSA = ~ 32~=flT[ln(xa/2)  + Y + 1/4] + O(x 6) d = 4  (44) 

x 4 F ( d / 2 -  2) O(x a) 4 < d < 6  
- 32 (d -  2) rta/zaa-4flT + 

K 4/"(d /2  - 2 ) 0(tt76 
- 32 (d -  2) nd/Zo'd--4flT + ) d >i 6 

Onsager (~6) observed that the internal energy of charged, conducting 
systems consisting of convex particles with a hard repulsive core has an exact 
lower bound. The Onsager result also implies that the excess entropy diverges 
at a slower rate than the excess energy in the limit of infinite coupling, (~7) thus 
in the Onsager limit 

T z J S  Msg 

lim dEMS A = 0. (45) 
/r ---* OO 

822/89/1-2-15 
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It can be verified that this limit is verified for the multidimensional 
generalization of the MSA. In other words the MSA interpolates between 
the Debye-Hueckel low density limit, where both theories are identical, 
to the high density/high coupling limit where the internal energy is the 
dominating contribution, given by the finite size capacitor model. 

4. THE MEAN SPHERICAL APPROXIMATION 

The MSA is introduced to satisfy both the low coupling limit given by 
the DH theory and the infinite coupling limit determined by the Onsager 
limit, t~7) The theory is developed using the spherical capacitor model. The 
radius of the capacitor is the radius of the central ion plus the width of the 
ionic cloud, 2c= 1/21". The value of the screening parameter, F, is obtained 
by minimizing the excess Helmholtz's free energy in the form 

zJA MsA = z J E  MsA - T z JS  MSA. (46) 

The excess internal energy (30) is written in terms of F and the excess 
entropy is obtained from Eq. (44) by simply substituting x = 2F: 

~ F 2 

| / "a / ' (2  - d/2) 

J - -'-'-~nT/~'---" (47) z JS  MSA "- / " 4  

2n2flT[ln(Fa) + y + 1/4] 

] F4F(d/2-2)  

d = 2  

2 < d < 4  

d = 4  

d > 4  

The excess Helmholtz's free energy is found to be 

zJA MSA ~_. 

f e2Ko(2Fa) / "2  

- 4/ ' aeK~(E/ ' a )  ~ P 'z2 - 2~--fl g 

eZKa/2 - 2(2F~ 
- 2 ( d - 2 )  O'd--2eKd/2(2I"t,) ~ piz2 + 

/-'u/"(2 _ d/2) 
dna/2fl 

e2Ko(2Fo .) 1 ~4 
-- ~ p i z  2 2nzfl [ln(Ftr)+ r + 1/4] ~ 4(~'28K2 ( 2FO" ) 

eZKa/2 - 2(2Fo') / - ,4/- , (d/2 - 2) 
- 2 ( d -  2) aa-ZeKa/z(2Va) ~ piz2~ + 2 ( d -  2) na/2tra-4fl 

d = 2  

2 < d < 4  

d = 4  

d > 4  

(48) 
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The MSA is the minimization of the excess free energy: (~~ 

~(AA MsA) --0, (49) 

which reduces to 

0 AA MSA 

OF 
=0, (50) 

since AA MsA is a function of the single parameter F. Substituting (48) into 
the previous equation, we find 

( 4Fdtrd- ZF( 2 -- d/2 ) 

)--4/"40"2[2 ln(Ftr)+ 2~ + 1 ] 
tcZl-'(d/2) 7ta(ZFtr) = ) 8 F 4 a Z F ( d / 2 -  2) 

L ~-~ 

2~<d<4  

d = 4  

d > 4  
(51) 

where 

7td(X) = 1 - ( d -  2) Ka/z-~(x)--K2/2-~(x). (52)  
xK, dx) K~,/dx) 

For odd d, 7ta(x) becomes a rational function of x: 

~t2n+3(X) = 1 -- 
2(2n + 1) G,,(x) 4x2G](x) 

G+,(x) G.~+~(x) n = 0 ,  1,2,3,... (53) 

where 

~ / ~  ~o (2n -j)! G,,(x) = ~ (2x)" eXK,,+ 1/z(X) =j=  ( n - j ) !  j! (2x)J n = 0, 1, 2, 3,... 

(54) 

and (51) becomes an algebraic equation in F. To obtain the behavior of the 
quotient in (45) in the infinite coupling limit, we use the asymptotic form 
of (51), 

4F4rr 2 
2Frr+ 1 d = 2  

8Fa+ lrra- lF(2 _ d/2) 
lim x2T'( d/2 ) ~ - d -  2 2 < d < 4 

r - .  oo 4Fsa312 ln(/"a) + 2y + 1 ] d = 4  

-16Fsa3F(d /2  - 2) d > 4  
( d - 2 )  2 

(55) 



214 Velfizquez e t  al. 

into (30) and (47) to find 

TzIsMSA { 1 

lim AE MsA - F -  
/"--* oo - ' ~ 0  

d = 2  
d > 2  (56) 

and therefore, the MSA satisfies the Onsager limit for infinite coupling for 
all d 4= 2. 
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